Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Neuropharmacol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486390

RESUMEN

INTRODUCTION: Armodafinil is a psychostimulant that promotes alertness, and it has been shown to improve attention, memory, and fatigue in healthy adults and adults with neurodevelopmental conditions that share symptoms with Attention Deficit Hyperactivity Disorder (ADHD). It is generally well tolerated and safe, and most of the adverse events reported are considered not serious. However, the available evidence on the efficacy of armodafinil for the treatment of ADHD in adults is scarce. OBJECTIVE: The present review aims to perform a systematized search of the available evidence on the possible therapeutic benefit of armodafinil treatment in adult patients with ADHD. METHODS: A literature review using PubMed was conducted to compile and summarize the available clinical and scientific evidence on the possible use of armodafinil as a pharmacological treatment in adult patients with ADHD. RESULTS: From the 86 articles reviewed, the available evidence showed that both acute and chronic treatment with armodafinil can improve wakefulness, memory, impulse control, and executive functions in adults with sleep disorders and other conditions. In addition, evidence of improvement in cognitive functions and mood alterations in other neuropsychiatric conditions was shown. CONCLUSION: Armodafinil could be useful for the treatment of ADHD in adults, according to the review of the literature from both pre-clinical and clinical studies.

2.
Polymers (Basel) ; 16(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543428

RESUMEN

Biological treatments involve the application of metallic material coatings to enhance biocompatibility and properties. In invasive therapies, metallic electrodes are utilized, which are implanted in patients. One of these invasive therapeutic procedures is deep brain stimulation (DBS), an effective therapy for addressing the motor disorders observed in patients with Parkinson's disease (PD). This therapy involves the implantation of electrodes (IEs) into the subthalamic nucleus (STN). However, there is still a need for the optimization of these electrodes. Plasma-synthesized polypyrrole doped with iodine (PPPy/I) has been reported as a biocompatible and anti-inflammatory biomaterial that promotes nervous system regeneration. Given this information, the objective of the present study was to develop and characterize a PPPy/I-coated electrode for implantation into the STN. The characterization results indicate a uniform coating along the electrode, and physical-chemical characterization studies were conducted on the polymer. Subsequently, the IEs, both coated and uncoated with PPPy/I, were implanted into the STN of male rats of the Wistar strain to conduct an electrographic recording (EG-R) study. The results demonstrate that the IE coated with PPPy/I exhibited superior power and frequency signals over time compared to the uncoated IE (p < 0.05). Based on these findings, we conclude that an IE coated with PPPy/I has optimized functional performance, with enhanced integrity and superior signal quality compared to an uncoated IE. Therefore, we consider this a promising technological development that could significantly improve functional outcomes for patients undergoing invasive brain therapies.

3.
RSC Adv ; 14(2): 855-862, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38174271

RESUMEN

Copper deficiency can trigger various diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and even compromise the development of living beings, as manifested in Menkes disease (MS). Thus, the regulated administration (controlled release) of copper represents an alternative to reduce neuronal deterioration and prevent disease progression. Therefore, we present, to the best of our knowledge, the first experimental in vitro investigation for the kinetics of copper release from MOF-74(Cu) and its distribution in vivo after oral administration in male Wistar rats. Taking advantage of the abundance and high periodicity of copper within the crystalline-nanostructured metal-organic framework material (MOF-74(Cu)), it was possible to control the release of copper due to the partial degradation of the material. Thus, we simultaneously corroborated a low accumulation of copper in the liver (the main detoxification organ) and a slight increase of copper in the brain (striatum and midbrain), demonstrating that MOF-74(Cu) is a promising pharmacological alternative (controlled copper source) to these diseases.

4.
Front Neurol ; 14: 1124245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288064

RESUMEN

Introduction: Spinal cord injury (SCI) can cause paralysis, for which effective therapeutic strategies have not been developed yet. The only accepted strategy for patients is rehabilitation (RB), although this does not allow complete recovery of lost functions, which makes it necessary to combine it with strategies such as plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical properties than PPy synthesized by conventional methods. After SCI in rats, PPy/I promotes functional recovery. Therefore, the purpose of this study was to increase the beneficial effects of both strategies and identify which genes activate PPy/I when applied alone or in combination with a mixed scheme of RB by swimming and enriched environment (SW/EE) in rats with SCI. Methods: Microarray analysis was performed to identify mechanisms of action underlying the effects of PPy/I and PPy/I+SW/EE on motor function recovery as evaluated by the BBB scale. Results: Results showed robust upregulation by PPy/I in genes related to the developmental process, biogenesis, synapse, and synaptic vesicle trafficking. In addition, PPy/I+SW/EE increased the expression of genes related to proliferation, biogenesis, cell development, morphogenesis, cell differentiation, neurogenesis, neuron development, and synapse formation processes. Immunofluorescence analysis showed the expression of ß-III tubulin in all groups, a decreased expression of caspase-3 in the PPy/I group and GFAP in the PPy/I+SW/EE group (p < 0.05). Better preservation of nerve tissue was observed in PPy/I and PPy/SW/EE groups (p < 0.05). In the BBB scale, the control group scored 1.72 ± 0.41, animals with PPy/I treatment scored 4.23 ± 0.33, and those with PPy/I+SW/EE scored 9.13 ± 0.43 1 month after follow-up. Conclusion: Thus, PPy/I+SW/EE could represent a therapeutic alternative for motor function recovery after SCI.

5.
Heliyon ; 9(4): e14687, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37009237

RESUMEN

Failure of therapeutic strategies for the management and recovery from traumatic spinal cord injury (SCI) is a serious concern. Dapsone (DDS) has been reported as a neuroprotective drug after SCI, although the phase after SC damage (acute or chronic) of its major impact on functional recovery has yet to be defined. Here, we evaluated DDS acute-phase anti-inflammatory effects and their impact on early functional recovery, one week after moderate SCI, and late functional recovery, 7 weeks thereafter. Female Wistar rats were randomly assigned to each of five experimental groups: sham group; four groups of rats with SCI, treated with DDS (0, 12.5, 25.0, and 37.5 mg/kg ip), starting 3 h after injury. Plasma levels of GRO/KC, and the number of neutrophils and macrophages in cell suspensions from tissue taken at the site of injury were measured as inflammation biomarkers. Hindlimb motor function of injured rats given DDS 12.5 and 25.0 mg/kg daily for 8 weeks was evaluated on the BBB open-field ordinal scale. Six hours after injury all DDS doses decreased GRO/KC plasma levels; 24 h after injury, neutrophil numbers decreased with DDS doses of 25.0 and 37.5 mg/kg; macrophage numbers decreased only at the 37.5 mg/kg dose. In the acute phase, functional recovery was dose-dependent. Final recovery scores were 57.5 and 106.2% above the DDS-vehicle treated control group, respectively. In conclusion, the acute phase dose-dependent anti-inflammatory effects of DDS impacted early motor function recovery affecting final recovery at the end of the study.

6.
Brain Res ; 1803: 148227, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36592802

RESUMEN

BACKGROUND: Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS: Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS: PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS: This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.


Asunto(s)
Epilepsia , Estado Epiléptico , Ratas , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Ácido Kaínico/farmacología , Fluorodesoxiglucosa F18/metabolismo , Dapsona/farmacología , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/diagnóstico por imagen , Estado Epiléptico/tratamiento farmacológico , Convulsiones/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo
7.
Neurosci Lett ; 788: 136855, 2022 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-36028005

RESUMEN

Neuropathic pain (NP) arises as a direct consequence of traumatic spinal cord injury (SCI), which leads to devastating consequences for people suffering from this condition since no specific treatment has been defined. One relevant mechanism in generating painful stimuli involves the direct participation of reactive oxygen species (ROS) at the cellular and subcellular levels. Cannabidiol (CBD) is one of the two most crucial cannabinoid components of the cannabis plant and has been proposed as a potential treatment for NP. Its antioxidant, neuroprotective and anti-inflammatory properties have been documented. However, there is insufficient evidence regarding CBD as treatment of NP induced by SCI or the mechanisms that underlie this effect. In this study, we evaluated the antinociceptive effect of CBD as an acute treatment after the nociceptive behaviors characteristic of NP were established (hypersensitivity threshold and hypersensitivity response). Furthermore, the participation of oxidative stress was determined by lipid peroxidation (LP) and glutathione concentration (GSH) in female Wistar rats with SCI. Acute treatment with CBD (2.5-20 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH concentration in injured tissue 15 days after injury. The findings of this study suggest that the antinociceptive effect induced by CBD is regulated by reducing oxidative stress by decreasing the LP and increasing the concentration of antioxidant (GSH) defenses.


Asunto(s)
Cannabidiol , Neuralgia , Traumatismos de la Médula Espinal , Analgésicos/farmacología , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Glutatión/metabolismo , Humanos , Estrés Oxidativo , Ratas , Ratas Wistar , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
8.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267785

RESUMEN

In spinal cord injury (SCI) there is damage to the nervous tissue, due to the initial damage and pathophysiological processes that are triggered subsequently. There is no effective therapeutic strategy for motor functional recovery derived from the injury. Several studies have demonstrated neurons growth in cell cultures on polymers synthesized by plasma derived from pyrrole, and the increased recovery of motor function in rats by implanting the polymer in acute states of the SCI in contusion and transection models. In the process of transferring these advances towards humans it is recommended to test in mayor species, such as nonhuman primates, prioritizing the use of non-invasive techniques to evaluate the injury progression with the applied treatments. This work shows the ability of diffusion tensor imaging (DTI) to evaluate the evolution of the SCI in nonhuman primates through the fraction of anisotropy (FA) analysis and the diffusion tensor tractography (DTT) calculus. The injury progression was analysed up to 3 months after the injury day by FA and DTT. The FA recovery and the DTT re-stabilization were observed in the experimental implanted subject with the polymer, in contrast with the non-implanted subject. The parameters derived from DTI are concordant with the histology and the motor functional behaviour.

9.
Neurosurg Focus ; 52(3): E12, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35231887

RESUMEN

OBJECTIVE: In this study, the authors sought to define the differences in the incidence of delayed cerebral ischemia (DCI) between patients treated with dapsone and those treated with placebo. Secondary objectives were to define the clinical outcome at discharge and 3 months and the incidence of brain infarction. METHODS: A prospective, randomized, double-blind, placebo-controlled study was performed and included patients with aneurysmal subarachnoid hemorrhage (SAH) within 5 days from ictus who were candidates for aneurysm occlusion, and who had a Fisher grade of 3 or 4. Patients with sulfa or sulfone drug allergies, hemoglobin < 11 g/dl, known G6PD deficiency, and those refusing informed consent were excluded. A minimal relevant effect decrease of 35% in the incidence of DCI was established. Patients were randomly assigned to receive a regimen of dapsone 2.5 ml (100 mg) daily or a placebo (aluminum hydroxide suspension, 2.5 ml daily). Both groups received validated treatment for aneurysmal SAH. The appearance of DCI on CT was assessed in every patient at discharge and 3 months later. We used the chi-square test to compare the DCI incidence between both groups, and the Student t-test or nonparametric tests to compare quantitative variables. RESULTS: Overall, 48 patients (70.8% women and 29.2% men) were included. The mean age was 50 years (SD 14.28 years, range 18-72 years). Prerandomization and postrandomization characteristics were balanced, except for the necessity of intra-arterial nimodipine administration in patients treated with placebo (15.4% vs 45.5%, p = 0.029. The incidence of DCI, the primary endpoint, for the whole cohort was 43.8% and was significantly lower in the dapsone group (26.9% vs 63.6%, p = 0.011). In addition, the irreversible DCI incidence was lower in the dapsone group (11.5% vs 54.5%, p = 0.12). A favorable modified Rankin Scale score was more frequent in the dapsone group at discharge and at 3 months (76.9% vs 36.4%, p = 0.005 and 80% vs 38.9%, p = 0.019, respectively). Also, the brain infarction incidence was lower in the dapsone group (19.2% vs 63.6%, p = 0.001). There was no difference between groups regarding adverse events. CONCLUSIONS: Dapsone seems to play a role as a prophylactic agent in patients at high risk of developing DCI after aneurysmal SAH. A multicenter investigation is necessary to increase the study population and confirm the consistency of the results observed in this study.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Hemorragia Subaracnoidea , Vasoespasmo Intracraneal , Adolescente , Adulto , Anciano , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/prevención & control , Dapsona/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fármacos Neuroprotectores/uso terapéutico , Estudios Prospectivos , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Vasoespasmo Intracraneal/etiología , Adulto Joven
10.
Behav Brain Res ; 423: 113776, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35120930

RESUMEN

High-fat diet (HFD) consumption has been related to metabolic alterations, such as obesity and cardiovascular problems, and has pronounced effects on brain plasticity and memory impairment. HFD exposure has a pro-inflammatory effect associated with microglial cell modifications in the hippocampus, a region involved in the working memory process. Immune tolerance can protect from inflammation in periphery induced by HFD consumption, when the immune response is desensitized in development period with lipopolysaccharide (LPS) exposure, maybe this previously state can change the course of the diseases associated to HFDs but is not known if can protect the hippocampus's inflammatory response. In the present study, male mice were injected with LPS (100 µg.kg-1 body weight) on postnatal day 3 and fed with HFD for 16 weeks after weaning. Ours results indicated that postnatal exposure to LPS in the early postnatal developmental stage combined with HFD consumption prevented glycemia, insulin, HOMA-IR, microglial process, and increased pro-inflammatory cytokines mRNA expression, without changes in body weight gain and spatial working memory with respect vehicle + HFD group. These findings suggest that HFD consumption after postnatal LPS exposure induces hippocampal immune tolerance, without prevention in spatial working memory impairment on male mice.


Asunto(s)
Dieta Alta en Grasa , Hipocampo/inmunología , Tolerancia Inmunológica , Lipopolisacáridos/farmacología , Trastornos de la Memoria/inmunología , Animales , Animales Recién Nacidos , Lipopolisacáridos/administración & dosificación , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Memoria Espacial/fisiología
11.
Curr Neuropharmacol ; 20(1): 194-210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34139984

RESUMEN

BACKGROUND: Dapsone (4,4'-diamino-diphenyl sulfone) is a synthetic derivative of sulfones, with the antimicrobial activity described since 1937. It is also a drug traditionally used in dermatological therapies due to its anti-inflammatory effect. In recent years its antioxidant, antiexcitotoxic, and antiapoptotic effects have been described in different ischemic damage models, traumatic damage, and models of neurodegenerative diseases, such as Parkinson's (PD) and Alzheimer's diseases (AD). Finally, dapsone has proven to be a safe and effective drug as a protector against heart, renal and pulmonary cells damage; that is why it is now employed in clinical trials with patients as a neuroprotective therapy by regulating the main mechanisms of damage that lead to cell death ObjectiveThe objective of this study is to provide a descriptive review of the evidence demonstrating the safety and therapeutic benefit of dapsone treatment, evaluated in animal studies and various human clinical trials Methods: We conducted a review of PubMed databases looking for scientific research in animals and humans, oriented to demonstrate the effect of dapsone on regulating and reducing the main mechanisms of damage that lead to cell death ConclusionThe evidence presented in this review shows that dapsone is a safe and effective neuro and cytoprotective treatment that should be considered for translational therapy.


Asunto(s)
Dapsona , Preparaciones Farmacéuticas , Animales , Antioxidantes , Apoptosis , Dapsona/uso terapéutico , Humanos , Neuroprotección
12.
Biometals ; 34(6): 1295-1311, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34529183

RESUMEN

Thallium (TI) is one of the most toxic heavy metals. Human exposure to Tl occurs through contaminated drinking water and from there to food, a threat to health. Recently, environmental contamination by Tl has been reported in several countries, urging the need for studies to determine the impact of endogenous and exogenous mechanisms preventing thallium toxicity. The cytoprotective effect of metallothionein (MT), a protein with high capacity to chelate metals, at two doses (100 and 600 µg/rat), was tested. Prussian blue (PB) (50 mg/kg) was administered alone or in combination with MT. A dose of Tl (16mg/kg) was injected i.p. to Wistar rats. Antidotes were administered twice daily, starting 24h after Tl injection, for 4 days. Tl concentrations diminished in most organs (p < 0.05) by effect of PB, alone or in combination with MT, whereas MT alone decreased Tl concentrations in testis, spleen, lung and liver. Likewise, brain thallium also diminished (p < 0.05) by effect of PB and MT alone or in combination in most of the regions analyzed (p < 0.05). The greatest diminution of Tl was achieved when the antidotes were combined. Plasma markers of renal damage increased after Tl administration, while PB and MT, either alone or in combination, prevented the raise of those markers. Only MT increased the levels of reduced glutathione (GSH) in the kidney. Finally, increased Nrf2 was observed in liver and kidney, after treatment with MT alone or in combination with PB. Results showed that MT alone or in combination with PB is cytoprotective after thallium exposure.


Asunto(s)
Metalotioneína , Talio , Animales , Ferrocianuros , Masculino , Metalotioneína/metabolismo , Estrés Oxidativo , Ratas , Ratas Wistar , Talio/metabolismo , Talio/toxicidad
13.
Spine (Phila Pa 1976) ; 46(19): 1287-1294, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34517396

RESUMEN

STUDY DESIGN: Prospective longitudinal experimental study. OBJECTIVE: We evaluate the effect of dapsone on tactile allodynia and mechanical hyperalgesia and to determine its anti-oxidant effect in a spinal cord injury (SC) model in rats. SUMMARY OF BACKGROUND DATA: Neuropathic pain (NP) as result of traumatic spinal cord injury is a deleterious medical condition with temporal or permanent time-course. Painful stimuli trigger a cascade of events that activate the N-methyl-D-aspartate (NMDA) receptor, inducing an increase in oxidative stress. Since there is no effective treatment for this condition, dapsone (4,4'diaminodiphenylsulfone) is proposed as potential treatment for NP. Its anti-oxidant, neuroprotective, and anti-inflammatory properties have been documented, however, there is no evidence regarding its use for treatment of NP induced by SCI. METHODS: In this study, we evaluated the anti-allodynic and anti-hyperalgesic effect of dapsone as preventive or acute treatment after NP was already established. Furthermore, participation of oxidative stress was evaluated by measuring lipid peroxidation (LP) and glutathione concentration (GSH) in rats with SCI. RESULTS: Acute treatment with dapsone (3.1-25 mg/kg, i.p.) decreased nociceptive behaviors in a dose-dependent manner, decreased LP, and increased GSH in the injured tissue 15 days after the injury was produced. On the other hand, preventive treatment (3 h post-injury, once daily for 3 days) with dapsone (3.1-25 mg/kg, i.p.) yielded similar results. CONCLUSION: The findings suggest that the anti-nociceptive effect of dapsone is regulated through the decrease of oxidative stress and the excitotoxicity is associated with the activation of NMDA receptors.Level of Evidence: N/A.


Asunto(s)
Neuralgia , Traumatismos de la Médula Espinal , Animales , Dapsona/farmacología , Modelos Animales de Enfermedad , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/prevención & control , Estrés Oxidativo , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
14.
Brain Res ; 1769: 147621, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34403661

RESUMEN

OBJECTIVE: Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS: Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS: FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS: PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/farmacología , Animales , Encéfalo/efectos de los fármacos , Electroencefalografía , Fluorodesoxiglucosa F18 , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Tomografía de Emisión de Positrones , Radiofármacos , Ratas , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patología
15.
Eur J Pain ; 25(8): 1839-1851, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33982314

RESUMEN

BACKGROUND: Neuropathic pain (NP) after spinal cord injury (SCI) is a disabling condition, without an effective treatment. Hyperexcitability of N-methyl-D-aspartate (NMDA) receptors and oxidative stress have been reported to be associated with pain development. Amantadine, an NMDA receptor antagonist, has been proposed as a potential therapy for NP. However, its use has not been tested for NP after SCI. METHODS: To produce SCI, 120 female Wistar rats were used, a contusion injury to the T10 and T12 thoracic vertebrae was performed from heights of 6.25 mm and 12.5 mm. Nociceptive behaviour, was evaluated with the use of von Frey filaments for 31 days. The final products of lipid peroxidation (LP) and concentration of reduced glutathione (GSH) in the injured tissue were quantified by fluorescence spectrophotometry. The antinociceptive effect of the acute (15 days after the injury) and chronic (once daily for three days immediately after the injury) with amantadine (6.25-50 mg/Kg. I.p.) was determined. Finally, the LP and GSH were quantified in the injured tissue. RESULTS: Acute treatment with amantadine reduced nociceptive behaviour. Concomitantly, LP was decreased by Amantadine treatment while GSH increased in the injured tissue. Similar effects were observed with chronic treatment with amantadine. CONCLUSIONS: Data from this study suggested that the antinociceptive effects of amantadine treatment are modulated through oxidative stress and excitotoxicity reduction associated with N-methyl-D-aspartate receptors activation. SIGNIFICANCE: This study suggests that acute treatment with amantadine decreases hypersensitivity threshold and frequency of hypersensitivity response in a dose-dependent manner, in rats with SCI, by decreasing oxidative stress. Since amantadine is an easily accessible drug and has fewer adverse effects than current treatments for hypersensitivity threshold and frequency of hypersensitivity response, amantadine could represent a safe and effective therapy for the treatment of neuropathic pain. However, further research is required to provide evidence of the effectiveness and feasibility.


Asunto(s)
Amantadina , Neuralgia , Preparaciones Farmacéuticas , Traumatismos de la Médula Espinal , Amantadina/farmacología , Amantadina/uso terapéutico , Animales , Femenino , Estrés Oxidativo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/tratamiento farmacológico
16.
Neurotoxicology ; 82: 18-25, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127410

RESUMEN

1-Methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity produces cellular damage resembling that encountered in Parkinson's disease. The mechanisms of cellular death after MPP+ include the participation of oxidative stress in the loss of dopaminergic neurons. Among the mechanisms of defense against oxidative stress, several copper-dependent proteins have been implicated: Cu/Zn-SOD, ceruloplasmin, and metallothionein. Another important mechanism of damage, is MPP + interference with mitochondrial respiration. Both, oxidative stress and inhibition of mitochondrial respiration may trigger apoptosis in the neurons after MPP+. The aim of the present study was to characterize the time-course of apoptosis induced by MPP+ to determine if copper sulfate pretreatment is able to prevent the activation of caspases and decreased the neuronal apoptosis. MPP+ was microinjected into rat striatum using a stereotactic frame. The results showed increased activities of caspases 8, 9 and 3, between 72-120 hours after administration of MPP+, both in striatum and midbrain. After this study, we tested the effect of CuSO4 on MPP+ neurotoxicity, showing a diminution of the apoptotic damage induced by MPP+, decreased levels of enzymatic activity of caspases: 8 (-34 and -25 %), 9 (-25 and -42 %) and 3 (-40 and -29 %) in striatum and midbrain, respectively. Finally, we performed an immunohistochemical analysis, evidencing a decreased number of apoptotic cells in the groups pretreated with copper sulfate pretreatment compared to the control group. With these findings, it is concluded that pretreatment with copper sulfate may be a good alternative to prevent MPP+-induced apoptosis.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Apoptosis/efectos de los fármacos , Sulfato de Cobre/farmacología , Cuerpo Estriado/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , 1-Metil-4-fenilpiridinio/antagonistas & inhibidores , Animales , Anexina A5/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , Etiquetado Corte-Fin in Situ , Masculino , Ratas , Ratas Wistar
17.
J Mater Sci Mater Med ; 31(7): 58, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32607849

RESUMEN

Traumatic spinal cord injury (TSCI) can cause paralysis and permanent disability. Rehabilitation (RB) is currently the only accepted treatment, although its beneficial effect is limited. The development of biomaterials has provided therapeutic possibilities for TSCI, where our research group previously showed that the plasma-synthesized polypyrrole/iodine (PPy/I), a biopolymer with different physicochemical characteristics than those of the PPy synthesized by conventional methods, promotes recovery of motor function after TSCI. The present study evaluated if the plasma-synthesized PPy/I applied in combination with RB could increase its beneficial effects and the mechanisms involved. Adult rats with TSCI were divided into no treatment (control); biopolymer (PPy/I); mixed RB by swimming and enriched environment (SW/EE); and combined treatment (PPy/I + SW/EE) groups. Eight weeks after TSCI, the general health of the animals that received any of the treatments was better than the control animals. Functional recovery evaluated by two scales was better and was achieved in less time with the PPy/I + SW/EE combination. All treatments significantly increased ßIII-tubulin (nerve plasticity) expression, but only PPy/I increased GAP-43 (nerve regeneration) and MBP (myelination) expression when were analyzed by immunohistochemistry. The expression of GFAP (glial scar) decreased in treated groups when determined by histochemistry, while morphometric analysis showed that tissue was better preserved when PPy/I and PPy/I + SW/EE were administered. The application of PPy/I + SW/EE, promotes the preservation of nervous tissue, and the expression of molecules related to plasticity as ßIII-tubulin, reduces the glial scar, improves general health and allows the recovery of motor function after TSCI. The implant of the biomaterial polypyrrole/iodine (PPy/I) synthesized by plasma (an unconventional synthesis method), in combination with a mixed rehabilitation scheme with swimming and enriched environment applied after a traumatic spinal cord injury, promotes expression of GAP-43 and ßIII-tubulin (molecules related to plasticity and nerve regeneration) and reduces the expression of GFAP (molecule related to the formation of the glial scar). Both effects together allow the formation of nerve fibers, the reconnection of the spinal cord in the area of injury and the recovery of lost motor function. The figure shows the colocalization (yellow) of ßIII-tubilin (red) and GAP-43 (green) in fibers crossing the epicenter of the injury (arrowheads) that reconnect the rostral and caudal ends of the injured spinal cord and allowed recovery of motor function.


Asunto(s)
Materiales Biocompatibles , Terapia por Ejercicio/métodos , Yodo/química , Polímeros/química , Pirroles/química , Traumatismos de la Médula Espinal/rehabilitación , Traumatismos de la Médula Espinal/cirugía , Animales , Coagulación con Plasma de Argón/métodos , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/efectos de la radiación , Precipitación Química/efectos de la radiación , Terapia Combinada , Modelos Animales de Enfermedad , Planificación Ambiental , Femenino , Inyecciones Espinales , Yodo/administración & dosificación , Yodo/efectos de la radiación , Laminectomía , Láseres de Gas/uso terapéutico , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Polímeros/administración & dosificación , Polímeros/síntesis química , Polímeros/efectos de la radiación , Pirroles/administración & dosificación , Pirroles/síntesis química , Pirroles/efectos de la radiación , Ratas , Ratas Long-Evans , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Traumatismos de la Médula Espinal/patología , Regeneración de la Medula Espinal/efectos de los fármacos , Natación
18.
Sci Rep ; 10(1): 3184, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081969

RESUMEN

The immature brain is especially vulnerable to lead (Pb2+) toxicity, which is considered an environmental neurotoxin. Pb2+ exposure during development compromises the cognitive and behavioral attributes which persist even later in adulthood, but the mechanisms involved in this effect are still unknown. On the other hand, the kynurenine pathway metabolites are modulators of different receptors and neurotransmitters related to cognition; specifically, high kynurenic acid levels has been involved with cognitive impairment, including deficits in spatial working memory and attention process. The aim of this study was to evaluate the relationship between the neurocognitive impairment induced by Pb2+ toxicity and the kynurenine pathway. The dams were divided in control group and Pb2+ group, which were given tap water or 500 ppm of lead acetate in drinking water ad libitum, respectively, from 0 to 23 postnatal day (PND). The poison was withdrawn, and tap water was given until 60 PND of the progeny. The locomotor activity in open field, redox environment, cellular function, kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK) levels as well as kynurenine aminotransferase (KAT) and kynurenine monooxygenase (KMO) activities were evaluated at both 23 and 60 PND. Additionally, learning and memory through buried food location test and expression of KAT and KMO, and cellular damage were evaluated at 60 PND. Pb2+ group showed redox environment alterations, cellular dysfunction and KYNA and 3-HK levels increased. No changes were observed in KAT activity. KMO activity increased at 23 PND and decreased at 60 PND. No changes in KAT and KMO expression in control and Pb2+ group were observed, however the number of positive cells expressing KMO and KAT increased in relation to control, which correlated with the loss of neuronal population. Cognitive impairment was observed in Pb2+ group which was correlated with KYNA levels. These results suggest that the increase in KYNA levels could be a mechanism by which Pb2+ induces cognitive impairment in adult mice, hence the modulation of kynurenine pathway represents a potential target to improve behavioural alterations produced by this environmental toxin.


Asunto(s)
Disfunción Cognitiva/metabolismo , Quinurenina/metabolismo , Lactancia , Plomo/toxicidad , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Exposición a Riesgos Ambientales , Femenino , Lactancia/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Memoria a Largo Plazo/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Oxidación-Reducción
19.
BMC Psychiatry ; 19(1): 295, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31597566

RESUMEN

PURPOSE: The aim of present study is to measure plasma clozapine (CLZ) and N-desmethyl clozapine (DMC) as biomarkers to correlate drug concentrations with the appearance of preclinical adverse hematic effects. METHODS: A high-performance liquid chromatographic method, using a diode-array (ultraviolet) detector, was validated to obtain reliable concentrations of CLZ and DMC, its main metabolite, in plasma of 41 schizophrenic patients taking CLZ. Blood neutrophils and leucocytes counting were concurrently assessed as a proxy to subclinical adverse reactions. RESULTS: The analytical method employed was linear, reproducible, and stable to measure concentrations of CLZ between 30 and 1000 ng/mL, while 12.5-560 ng/mL of the metabolite. The method allowed us to correlate CLZ plasma concentrations, the time taking CLZ and CLZ dose as determinants of neutrophils' counting with a R2 = 0.447, using a multiple regression analysis model. Likewise, the correlation of leucocyte counting vs CLZ plasma levels and CLZ time, showed a R2 = 0.461. DMC correlated significantly with both neutrophils and leucocytes counting, but was excluded from the regression when CLZ concentration was included in the model. Finally, no other hematological adverse reactions were recorded. One patient presented a cardiovascular complication. The negative correlation between clozapine and neutrophil count observed in patients, suggest that CLZ itself, but not DMC, could be related to hematologic side-effects. CONCLUSION: The findings of this study, demonstrate for the first time, that plasma levels of CLZ and time taking the drug are independent determinants of blood neutrophils and leucocytes, so the monitoring of plasma CLZ may be useful in the clinic practice to determine safe dosing of the drug.


Asunto(s)
Antipsicóticos/sangre , Clozapina/análogos & derivados , Leucocitos/metabolismo , Neutrófilos/metabolismo , Esquizofrenia/sangre , Esquizofrenia/tratamiento farmacológico , Adulto , Antipsicóticos/uso terapéutico , Cromatografía Líquida de Alta Presión/métodos , Clozapina/sangre , Clozapina/uso terapéutico , Femenino , Humanos , Masculino , México/epidemiología , Persona de Mediana Edad , Adulto Joven
20.
Oxid Med Cell Longev ; 2019: 1327986, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31019649

RESUMEN

Epilepsy is a neurological disorder characterized by recurrent spontaneous seizures due to an imbalance between cerebral excitability and inhibition, with a tendency towards uncontrolled excitability. Epilepsy has been associated with oxidative and nitrosative stress due to prolonged neuronal hyperexcitation and loss neurons during seizures. The experimental animal models report level of ATP diminished and increase in lipid peroxidation, catalase, and glutathione altered activity in the brain. We studied the immunohistochemical expression and localization of antioxidant enzymes GPx, SOD, and CAT in the rat brains treated with KA and PTZ. A significant decrease was observed in the number of immunoreactive cells to GPx, without significant changes for SOD and CAT in KA-treated rats, and decrease in the number of immunoreactive cells to SOD, without significant changes for GPx and only CAT in PTZ-treated rats. Evident immunoreactivity of GPx, SOD, and CAT was observed mainly in astrocytes and neurons of the hippocampal brain region in rats exposed at KA; similar results were observed in rats treated with PTZ at the first hours. These results provide evidence supporting the role of activation of the Nrf2 antioxidant system pathway against oxidative stress effects in the experimental models of epileptic seizures.


Asunto(s)
Inmunohistoquímica/métodos , Factor 2 Relacionado con NF-E2/metabolismo , Convulsiones/enzimología , Convulsiones/patología , Animales , Antioxidantes/metabolismo , Conducta Animal , Hipocampo/patología , Ácido Kaínico , Masculino , Modelos Biológicos , Pentilenotetrazol , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...